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Abstract— Popular Deep learning models suffer many 

drawbacks such as making wrong predictions with great 

confidence, lack of uncertainty estimation capability, and failure 

in real-time scenarios. The main reason for the uncertainty is 

due to the large gap between how neural networks are trained 

in practice and how they are evaluated in deployment. When it 

comes to safety-critical applications, it is very important to build 

confidence in the output that is obtained. A well-calibrated 

uncertainty quantification method can tell whether a model is 

confident in its predictions or not. This survey focuses on 

techniques used for uncertainty quantification in deep learning. 

Keywords— Uncertainty Quantification, Bayesian 

techniques, Non-Bayesian techniques, safety-critical applications, 

Calibration, Monte Carlo. 

1.Introduction  

With the recent advances in AI, many crucial real-world 
applications rely on it. Deep learning models take many 
decisions in safety-critical applications such as autonomous 
driving or medical diagnosis. If any failures happen in such 
applications, then they will be damaging and effects the lives 
around them. So it is very important to know whether the 
decision is correct or not. Training a neural network is not only 
for making predictions but also to tell whether the model is 
confident in its output or not. 

It is required to develop an approach for a neural network to 
crunch data, and output, not just a prediction but also the 
model’s confidence level based on the quality of the available 
data. A high-performance model is not good enough, but it is 
also important to understand when the model cannot be 
trusted. If a model can detect when it is not confident in its 
predictions, it can sometimes save lives as well as money.  

Using this neural network, predictions P(y|x) for specific 
benchmarks y given new x are possible. When it predicts 
wrong decisions, it may lead to the failure of the system. So, 
in order to avoid failures, it is necessary to find why, when, 
and, how a model becomes uncertain. The answer to "why" 
is that [1] the distribution of training datasets is different from 
that in real-world settings. The following are the reasons for 
the data set shift [2]  

Simple covariate shift is when only the distributions of 
covariates x change and nothing else does. 

 Prior probability shift is when only the distribution over 
y changes and nothing else does. 

Sample selection bias is when the distributions vary as a 
result of an unidentified sample rejection mechanism. 

Imbalanced data is a planned dataset shift used for 
computational or modeling convenience. 

 Domain shift entails modifications to measurements. 

Source component shift involves changes in the 
contribution components' strengths. 

 The answer to “when” is that in real-time applications, the 
model may behave indifferently from that of the training 
time. If such models are used in safety-critical applications it 
may lead to catastrophic effects. The answer to “how” is that 
uncertainty happens in two axes of neural networks [3] they 
are (i) Aleatoric uncertainty and (ii) epistemic uncertainty. 
The first one is the uncertainty in the data itself. This is also 
known as irreducible [4] uncertainty, since we collect a large 
amount of data then also we have underlying noise in the 
collection process that is inherent in the data itself. The only 
way to reduce aleatoric uncertainty is to change the sensor 
and get more accurate data. Epistemic uncertainty estimation 
is much more challenging as compared to that of aleatoric 
uncertainty and there are some emerging approaches to 
determine epistemic uncertainty. 

If we collect a large amount of data, then also we have 
underlying noise in the collection process that is inherent in 
the data itself. The only way to reduce aleatoric uncertainty 
is to change the sensor and get more accurate data. Epistemic 
uncertainty is much more challenging to estimate than 
aleatoric uncertainty and there are some emerging approaches 
to determine epistemic uncertainty. 

The most important reason for the failure of a system is the 
difference in real-time and training-time behaviors. This is 
due to the fact that the data available during real-time is 
different from that of the training time. Out-of-distribution 
data may lead to wrong predictions and it affects the entire 
safety of the system [5]. So most of the literature, researchers 
try to improve the model by applying different transitions to 
the data set like shifts in intensity, rotation and applying 
perturbations. The major gap identified in this topic is there 
are no standards or regulations to be followed in their 
evaluation and no discussed steps or measures to be followed 
in the real-time execution of the model. 

This survey examines some of the recent approaches for 
estimating uncertainty, its effectiveness, and its 
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shortcomings. Also, try to explore the works that deal with 
the real-time evaluation of the model. 

 

2 Uncertainty Estimation Using Bayesian techniques 

There are many drawbacks to neural networks. Many 
hyperparameters require specific tuning and it takes large 
datasets or a huge amount of time. The Neural Networks 
trained with the best hyperparameters obtain point estimates 
of the weights in the network as in Fig1.a. 

 

Fig. 1a. Deterministic NN            Fig. 1b. Bayesian NN 

There is no uncertainty in this point estimates and this is 
very important when the outputs from the deep learning 
models do something pretty serious like medical diagnosis or 
they are operating self-driving cars. 

2.1 Bayesian Learning 

The Bayesian framework as in Fig. 1b, provides an 
effective mechanism to deal with uncertainty. Given a 
parameterized model fθ, the data uncertainty in Bayesian 
modeling is formalized as a probability distribution over the 
model outputs y, and the model uncertainty is defined as a 
probability distribution over the model parameters θ. The 
prediction distribution over y∗, is described by Gal et. al. [6] 
and it is given in equation 1. 

���∗ ∣ �∗, �	 = ∫ ���∗ ∣ �∗, �	��������
Data 

�� � ∣ � 	������
Model 

�� 

                                                                           (1) 

The uncertainty on the parameter estimation given a 
training sample set D is described by the term p(θ|D), which 
is also known as the posterior distribution of the model 
parameters. This is in general not tractable. Thinking of 
training neural networks as an inference problem, Bayes’ 
theorem can be written as equation 2 

��� ∣ �	 = ��� ∣ �	���	
���	  

                             (2) 

The prior distribution, p(θ) only gives information about θ. 
The likelihood estimation of data in D, p(D|θ) is the predicted 
distribution by the model parameter θ. For higher-
dimensional data, the computation of the posterior 
probability is practically unrealizable. Many approaches like 
Monte Carlo dropout, Markov Chain Monte Carlo , 
and Variational Inference methods can be used to overcome 
the above-mentioned difficulty. 

2.2 Monte Carlo (MC) dropout 

This is a variation of the dropout layer [6] because of the 
Monte Carlo simulation this method has better results and 
accuracy. In this approach, a dropout layer is added to the 
model during each iteration based on the dropout ratio. 
Finally, an ensemble approach is used to approximate the 
mean prediction and it is given by equation 3. 

�∗ ≈ 1
� �  

�

���
��∗ = 1

� �  
�

���
�����∗	 

     (3) 

Where fθ1,....., fθN are  the expected value from N 
deterministic networks, parameterized by N samples, θ1, θ2, 
..., θN.  

The MC dropout method has been successfully applied in 
different applications. The main advantage of this method is 
that it can be directly applied to any existing architecture 
without any change. 

 

     2.3 Markov chain Monte Carlo (MCMC) 

It is a class of algorithms for sampling from unknown 
posterior distributions. A Markov chain of samples’ 
equilibrium distribution should be equal to the target 
distribution. Each Markov step is a sampling from the 
target distribution. If more steps are selected, that 
means more samples are chosen and there will be a 
more accurate assessment of the distribution. This 
approach relies on Markov screening which means the 
state of the sample t+1 only depends on the previous 
sample t. That is the conditional probability of a 
current sample which depends on the conditional 
probability of the previous sample and not on the 
history. 

 

 

Fig. 2. Illustration of Markov Chain Monte Carlo 
Method 

The MCMC algorithm generates the proposed 
sample (�) from the current sample ( !). The 
proposed sample [7] is either accepted ( ! → �) or 
rejected ( ! →  ! ) as shown in Fig 2. 

This methodology can be applied when it is not 
possible to get to the distribution directly but it is 
required to construct a set of samples to search over 
the range of possible outcomes. The distributions in 
high dimensional spaces are very complicated and it 
is difficult to find the regions of high probability. 
This method is very useful in such cases. For 
sampling in higher dimensional space, this method 
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requires more samples and convergence takes more 
time. 

2.4 Variational Inference  

 This method helps to approximate the posterior 
probability of unobserved variables [8]. Rather than 
finding the true posterior P(w|X,Y), this method 
approximates variational distribution q(w) 
parameterized by θ. Since it is derived from the 
observed data points X rather than being directly 
observed, the parameter is also known as a latent 
variable. Finding the combination of latent variables 
θ that can best represent the obtained result is the 
goal of the optimization process. The optimization 
objective is the Kullback-Leibler (KL) divergence, 
also known as relative entropy [9], which is used to 
assess how similar the two distributions are.  

The  KL divergence between the two distributions 
are given in equation 4 

"# $%�&	 ∥ �(�& ∣ ), *		 = ∫ %�&	log $ %�&	
(�& ∣ ), *	. �&

= ∫ %�&	log �%�&		�& − ∫ %�&	log �(�& ∣ ), *		�&
 = ∫ %�&	log �%�&		�& − ∫ %�&	log �(�&, ), *		�& + log �(�), *		

 

                                                                                         (4) 

3 Uncertainty Estimation Using Non-Bayesian 

Techniques 

The main idea behind this technique is to combine the 
different probability decisions or beliefs. There are different 
Non-Bayesian approaches are there. Some of the important 
techniques include Deep ensembles, Softmax calibration and 
Selective classification. 

3.1 Deep ensembles 

In traditional classification, we have many data points and 
each data point has features x, where x is some D dimensional 
data and y is the label. The classification technique uses the 
value of x to predict y.  If a deep neural network is used for 
this task, it would simply characterize the function for the 
classification. In the Ensemble model, it will take a dataset 
and simply train multiple different deep neural networks and 
for the classification task, the new data point is given to all 
multiple models and finally aggregate the results from all 
models. Hence a better prediction is obtained than that of a 
single model. So this is called an ensemble model. If the 
ensemble members are deep neural networks then it is called 
a deep ensemble. By using the Ensemble model, a 
generalizable function can be learned [7] and is shown in Fig. 
3

 

Fig. 3.Cartoon Illustration of the hypothesis deep 
ensembles explore diverse modes in function space 

3.2 Softmax calibration 

Calibration measures how well the predicted confidence 
aligns with the observed accuracy. The confidence is 
actually the probability estimation of the model by itself. 
The calibration can be realized using equation 5. 

∣ (�*̂ = � ∣ �̂ = �	 = �,  ∀� ∈ [0,1]  
     (5) 

The above equation is based on the classifier having data 
sets belonging to any of the classes, Y=1,2,…..,k and the 
classifier predicts *7 = �  for the given data x in X with a 
confidence  �̂ =p where p means the probaility of correctness. 

 

Fig. 4a. Calibrated Classifier          Fig. 4b. Uncalibrated Classifier 

From Fig. 4a. and 4b, it is very clear how a well-calibrated 
classifier performs as compared to an uncalibrated classifier. 
Here the model confidence for each of the samples is put into 
multiple bins and this is plotted on the X-axis and the actual 
accuracy of the model is shown on the Y-axis. If it is perfectly 
calibrated then all the points should end up in the diagonal 
line. If the plot between confidence and accuracy is linear, 
then it will be an ideal calibration line. The calibration error 
is the degree to which the calibration curve for the classifier 
deviates from the ideal calibration line. The softmax function 
is used frequently to express per-class model prediction 
confidence since it transforms the logit values into a number 
between 0 and 1 

3.3 Selective classification 

This is an important tool in which the model can abstain from 
its prediction if it is not sure about the output. So, this is also 
known as the reject option [10] as it is very helpful in 
reducing the misclassification risk. This is very useful for 
critical applications when taking important decisions so 
humans can take control of it. A classifier f: X → Y [11], 
defined over the input X having m attributes and output Y 
having k class labels, the misclassification risk of a selective 
classifier is given in equation 6. 

9̂��, :�	 =
1; ∑���=  >�����	, ��	:����	

1; ∑���=  :����	
 

     (6) 
Here a selection function gθ(x) is used , which is 

responsible for making the classifier to take decision on a 
particular data point. 
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:���	 = ?1  if @A��	 ≥ �
0  otherwise. 

 
            (7) 

 

 

Table 1: Summary of different Uncertainty techniques and applications 
 

Authors Year Architecture Uncertainty techniques Application 
Catak et al. 2021 YoLo, SSD300 and SSD512 MC dropout Object Recognition  

Milanés et al. 2021 Shallow Convolutional Neural 
Network (SCNN-MCD) and an 

ensemble model (E-SCNN-
MCD). 

Ensemble 3D object detectors 

Stoean et al. 2020 CNN-LSTM MC dropout Spinocerebellar ataxia 
type 2 

Kendall et al. 2017 DenseNet architecture MC dropout Computer vision 
Deepshikha et al. 2021 YOLOv5 MC DropBlock Object Recognition 

Lakshminarayanan et 
al. 

2017 DNN Deep Ensembles Experiment on 
different datasets like 

MNIST, SVHN  
,ImageNet etc. 

Zhou et al. 2020 CNN Markov Chain Monte 
Carlo 

Contaminant Source 
Identification 

Geifman et al.  2017 DNN Selective classification Experiment on 
different datasets like 
CIFAR-10, CIFAR-
100 and ImageNet 

 

In the equation 7 the function, @A��	 gives the confidence 
score for the final prediction. This gives a way to use different 
confidence functions from MC dropout, ensemble, or any 
other methods discussed above. Here the data points whose 
confidence score is above the threshold θ are considered for 
classification.  
 

4. Observations 

 

     The approaches discussed above provide different 
mathematical models for quantifying uncertainty in the 
predictions. Among the Bayesian techniques, the MC dropout 
approach provides better results in an efficient way. Also, the 
Variational Inference approach can overcome the difficulty 
of Bayesian learning in finding the posterior distribution. 
MCMC method is very useful for finding distributions in 
higher dimensional space. 

In the case of Non-Bayesian Techniques, Deep ensemble 
approach increase the reliability of the predictions by 
combining the outputs from different neural networks. 
Predictions with high uncertainty (or low confidence) can be 
ignored in the presence of a correctly calibrated model to 
prevent unneeded model errors. Selective classification with 
the help of a selection function gθ(x) helps to reduce the 
misclassification risk. 

 

5. Conclusions 

 

The different methods used to capture uncertainty in deep 
learning models are discussed. Neural networks do not have 
the inherent capability to perform uncertainty quantification. 
So it is very important for the developers to design models 
that not only give the prediction but also tell when it is not 

sure about the output which means uncertainty. Researchers 
use these methods as an offline procedure. Very few works 
explained the real-time or application phase scenario of these 
methods. When thinking about safety-critical applications, 
real-time uncertainty prediction is very important. Reliable 
and robust DL models can be built through proper uncertainty 
quantification only. 
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